Structural Consequences of Electron 'Deficiencies' in Metallaheteroboranes; Hyperpolyhedral Metal–Metal Bonding

By Edward K. Nishimura

(1260 Devisadero Street, Pacific Grove, California 93950)

Summary closo-Metallaheteroboranes which appear to have fewer than (n + 1) skeletal electron pairs to hold their *n* skeletal atoms together may have incompletely filled metal *d*-orbitals or hyperpolyhedral metal-metal bonding.

CONVENTIONAL electron counting schemes¹ for boranes, carbaboranes, and their metalla-derivatives associate a *closo*-structure with *n* skeletal atoms and (n + 1) skeletal electron pairs. The metal carbonyl and metallaborane clusters such as $[Rh_7(CO)_{16}]^{3-,2}$ $[Os_6(CO)_{18}]^{,3}$ or $[\eta-C_5H_5)_3$ -Co₃B₄H₄]⁴ suggest that capped *closo*-structures may be

expected for systems with fewer skeletal electron pairs. However, metallacarbaboranes of the early transition metals, such as $[(C_2B_9H_{11})_2Cr^{111}]^-$ or $[(C_2B_{10}H_{12})_2Ti^{11}]^{2-}$, which are apparently¹ several electrons (three and four, respectively, in these cases) short of the number appropriate for a *closo*-structure nevertheless adopt *closo*- (not capped closo-) structures.⁵ This is because metallaheteroboranes with apparently fewer than (n + 1) skeletal electron pairs to hold n cluster atoms together may actually possess precisely (n + 1) such pairs, and adopt *closo*- (rather than capped *closo*-) structures because their metal atoms either have incompletely filled (nonbonding) d-orbitals⁶ or relieve their electron 'deficiency' by extra metal-metal bonding. In some cases, this extra or 'hyperpolyhedral' metal-metal bonding may distort the geometry predicted by skeletal electron pair theory. The first example of hyperpolyhedral metal-metal bonding in metallaborane chemistry is now described.

Previously, the ten-vertex diferracarbaborane $[(\eta - C_5H_5)_2$ - $Fe_2C_2B_6H_8$ was incorrectly deduced to contain 10 (=*n*) skeletal electron pairs.^{1,4,7} On the basis of this count, an idealised geometry of a capped tricapped trigonal prism (CTTP) would be predicted.^{3,4,8} Nevertheless, this was not confirmed by an X-ray structural analysis of the diamagnetic isomer^{7a} and as a result, the unusual arrangement[†] of the atoms in this isomer has been subjectively or incorrectly described in no less than five different ways.^{4,7,9} However, the magnetic data for the paramagnetic isomer^{7a} (μ_{eff} 3.05 B.M.) dictate that the iron atoms must be described as nominal 17-electron d^{5} -Fe^{III} atoms, each iron vertex then being the source of two (rather than one^{1,7a,9}) skeletal electrons. Thus, $[(\eta - C_5H_5)_2Fe_2C_2B_6H_8]$ contains precisely 11 (= n + 1) skeletal electron pairs and the structure of the paramagnetic isomer may be predicted to be an idealised bicapped Archimedean antiprism (BAA). The diamagnetism and the Fe–Fe distance of 2.571(7) Å in the second isomer^{7a} is direct evidence of a hyperpolyhedral metal-metal bond. The singular arrangement of the cluster atoms in the diamagnetic species might now be attributed to a distortion of a BAA concomitant with the hyperpolyhedral metalmetal bond formation and can be objectively described as a convex ten-vertex hexadecahedron of C_s symmetry (if all atoms were the same) which is isogonal¹⁰ to and a permutation of a BAA. Contrary to previous claims, 4,7 this arrangement is not a CTTP, CTTP's being isogonal concave hexadecahedrons of either C_s or C_{3v} symmetry. Hence, the diamagnetic isomer is in a closo-structural classification in accord with skeletal electron pair theory.

Hyperpolyhedral metal-metal bonding should not have a singular existence and it is predicted that this phenomenon will occur in other bi- and poly-metallic metallaheteroboranes containing transition metals to the left of the cobalt triad.

Added in proof: Recently, electron 'deficient' ferracobaltaand diferra-carbaboranes were shown or tentatively proposed to exhibit regular idealised closo-structures in the absence of direct hyperpolyhedral metal-metal bonding.¹¹

I thank Prof. R. B. King of the University of Georgia and a referee for helpful comments and suggestions.

(Received, 17th April 1978; Com. 391.)

[†] See ref. 7(a) for a drawing of, and the structural data for this isomer.

- ¹ R. W. Rudolph, Accounts Chem. Res., 1976, 9, 446, and references therein. ² V. G. Albano, P. L. Bellon, and G. C. Ciani, Chem. Comm., 1969, 1024.
- ³ R. Mason, K. M. Thomas, and D. M. P. Mingos, J. Amer. Chem. Soc., 1973, 95, 3802; C. R. Eady, B. F. G. Johnson, and J. Lewis, J.C.S. Dalton, 1975, 2606.

- ⁴ J. R. Pipal and R. N. Grimes, Inorg. Chem., 1977, 16, 3255.
 ⁵ D. St. Clair, A. Zalkin, and D. H. Templeton, Inorg. Chem., 1971, 10, 2587; C. G. Salentine and M. F. Hawthorne, *ibid.*, 1976, 15, 2872; F. Y. Lo, C. E. Strouse, K. P. Callahan, C. B. Knobler, and M. F.Hawthorne, J. Amer. Chem. Soc., 1975, 97, 428.
 ⁶ D. A. Brown, M. O. Fanning, and N. J. Fitzpatrick, Inorg. Chem., 1978, 17, 1620; R. J. Wiersema and M. F. Hawthorne, J. Amer.

Chem. Soc., 1974, 96, 761. ⁷ (a) K. P. Callahan, W. J. Evans, F. Y. Lo, C. E. Strouse, and M. F. Hawthorne, J. Amer. Chem. Soc., 1975, 97, 296; (b) W. M.

- Maxwell, E. Sinn, and R. N. Grimes, *ibid.*, 1976, 98, 3490.
 ^a D. M. P. Mingos and M. I. Forsyth, *J.C.S. Dalton*, 1977, 610.
 ^a R. B. King and D. H. Rouvray, *J. Amer. Chem. Soc.*, 1977, 99, 7834.

 R. B. King, J. Amer. Chem. Soc., 1972, 94, 95.
 C. G. Salentine and M. F. Hawthorne, Inorg. Chem., 1978, 17, 1498; K. P. Callahan, A. L. Sims, C. B. Knobler, F. Y. Lo, and M. F. Hawthorne, *ibid.*, p. 1658.